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introduction

• Bearings
• Ball and roller bearings, together called rolling element bearings.

• Most common machine elements that permit rotary motion of shafts.

• Most critical components of rotating machines as a large majority of system failures arise
from faulty bearings.

• Defects: Cage, ball, outer race and inner race.

• Acc to IEEE and EPRI, bearing fault are 41% and 42% respectively. In case of large IMs,
bearing faults can account for 44% of the total failures.

• Contemplated condition monitoring of bearings and early detection of faults necessary.

• Techniques of Condition Monitoring
• Different analyses like chemical analysis, electrical analysis, and mechanical analysis.

• Vibration analysis is the most commonly employed technique owing to its numerous
advantages.

• Vibration analysis of REBs taken up to be studied as a strategy for fault detection of rotating
machines. 4



introduction

• Data Acquisition and Processing
• Helps in making informed decisions about the health status of any given rotating

component.

• Two primary methods for vibration data collection: manual and automated.

• Further pre-processing required for data de-noising and filtering through various signal
processing techniques.

• Even with numerous methodologies for data acquisition and signal processing being
researched and established in the world, analysis of complexities of real-world machinery
health signals requires domain-expertise assistance to achieve desired accuracies.
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introduction

• Need of Artificial Intelligence

• Manual analysis of the vibration signals is not competent enough as vibration
signals often contain background noise or low-amplitude signals measured in a
noisy background.

• Manual inspection impractical for early detection of faults.

• Application of AI in the form of ML or further, DL becomes obligatory. Direct use of
raw vibration signals is challenging, leading to feature engineering and AI-based
classifiers.

• Most publications in this field use data acquired from accelerated degradation test
beds instead of real industrial equipment due to various reasons. However,
application of test-rig trained models to real-world industrial environments poses
the biggest challenge.
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Transfer learning

• Concept in deep learning (and machine learning).

• Technique to transfer the knowledge and experience learned from
existing datasets to help identify unforeseen bearing fault conditions at
different setups in real-world applications.

• Aids in transferring a test-rig specific developed ML or DL model/
network to industrial applications in real-world scenarios with slight
tuning of the existing trained model.

• This project work aims to delve deeper in this concept of Transfer
Learning and its practical applications.
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ALEXNET

• Designed by Alex Krizhevsky in collaboration with llya Sutskever and
Geoffrey Hinton in September, 2012.

• Proposed advancement over existing networks for applications in image
classification.

• Pre-trained on the Imagenet dataset which contains almost 14 million
images across a thousand classes.

• 08 layers with learnable parameters, first 05 layers convolutional layers
with a combination of max pooling layers followed by 03 fully connected
layers.

• Convolutional layers - ReLU activation function, output layer - Softmax
activation function. 8



alexnet

• Number of filters keeps on increasing as we move deeper into the network resulting
in extraction of more features in every layer with simultaneous reduction in filter size
leading to decreased feature map shape with every step.
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alexnet
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Layer
Filters/ 

neurons
Filter Size Stride Padding

Size of Feature 

Map

Activation 

function

Input - - - - 227 x 227 x 3 -

Conv 1 96 11 x 11 4 - 55 x 55 x 96 ReLU

Max Pool 1 - 3 x 3 2 - 27 x 27 x 96 -

Conv 2 256 5 x 5 1 2 27 x 27 x 256 ReLU

Max Pool 2 - 3 x 3 2 - 13 x 13 x 256 -

Conv 3 384 3 x 3 1 1 13 x 13 x 384 ReLU

Conv 4 384 3 x 3 1 1 13 x 13 x 384 ReLU

Conv 5 256 3 x 3 1 1 13 x 13 x 256 ReLU

Max Pool 3 - 3 x 3 2 - 6 x 6 x 256 -

Dropout 1 Rate = 0.5 - - - 6 x 6 x 256 -

Fully Connected 1 - - - - 4096 ReLU

Dropout 2 Rate = 0.5 - - - 4096 -

Fully Connected 2 - - - - 4096 ReLU

Fully Connected 3 - - - - 1000 SoftMax



PURSUED methodology
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Experimental setup
Source domain

12Bearing test rig setup

DC Motor 
220 V, 1 HP Static load 100 N

Bearing Housing Accelerometer



Experimental setup
Source domain
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• DC motor of 220 V and 1 HP

• Bearing used: Make SKF, model BB1B420205

• Uniaxial ICP TEDS accelerometer (Make: B&K, Type:
4533-B-001, Range: 0.2 Hz – 12.8 kHz) mounted on the
bearing housing.

• Variety of defects in bearings i.e., outer race (OR), inner
race (IR) defect, ball defect (BD), and cage defect (CD)
are Introduced.

Number of balls (z) 8

Pitch Diameter (D) 37.9 mm

Contact Angle (ϕ) 00

Outer Diameter (OD) 52 mm

Ball Diameter (d) 8.7 mm

Bore Diameter (Bd) 25 mm

Specifications of deep grooved ball bearing



Data acquisition and analysis
source domain

• Output of the accelerometer fed to a data analyser (Make: OROS, 8
channel, Model: OR35).

• A static load of 100 N applied and system is left to run for an hour to
reach a steady-state situation and five-minute data is subsequently
captured.

• Data collected for different bearing conditions and three speeds viz. 19
Hz, 23 Hz, and 29 Hz with the sampling frequency selected as 6400 Hz.

• A healthy bearing condition used as a reference line to make the
distinction with other conditions.
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Data acquisition and analysis
source domain

• Using the bearing specifications and experimental data, characteristic
defect frequencies are calculated:

• Fast Fourier transform (FFT) implemented to detect these characteristic
defect frequencies from analytic signal for each bearing fault condition.
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Defect frequency 
expressions

Computed defect frequencies

19 Hz 23 Hz 29 Hz

𝑓0𝑅 =
𝑓𝑟

2
𝑧 1 −

𝑑

𝐷
cos𝜙 58.55 70.88 89.37

𝑓𝐼𝑅 =
𝑓𝑟

2
𝑧 1 +

𝑑

𝐷
cos𝜙 93.45 113.12 142.63

𝑓𝐵𝐷 =
𝑓𝑟∗𝐷

𝑑
1 −

𝑑2

𝐷2
cos2 𝜙 78.41 94.92 119.68

𝑓𝐶𝐷 =
𝑓𝑟

2
1 −

𝑑

𝐷
cos𝜙 7.32 8.86 11.17



Data acquisition and analysis
source domain
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58.55 70.88 89.37

142.63113.1293.45



Data acquisition and analysis
source domain
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78.41 94.92 119.68

7.32 8.86 11.17



signal-to-image conversion 
technique selection

• Signal-to-image conversion (SIC) techniques

• Selected on the basis of common application and efficiency.

• Three techniques selected for comparison.
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Signal-to-image 
conversion 
techniques

SIC using Short Term 
Fourier Transform 

(STFT)

SIC using conversion 
to Grayscale Images

SIC using 
Continuous Wavelet 

Transform (CWT)



Processing of data
source domain

• Splitting of acquired data for each bearing condition and each test speed
into smaller equal signal samples undertaken towards generating
training data.

• Each signal sample must contain enough sampling points to convey the
information of the bearing status.

• Minimum running speed = 19 Hz

• Sampling frequency = 6400 Hz
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Processing of data
source domain
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Acquired data for outer race defect at 23 Hz (19,20,000 points)

1st sample (6400 points)

2nd sample (6400 points)

50% 
overlap

STFT Images CWT ImagesGrayscale Images



Processing of data
source domain

Split Sample length : 6400 points

Overlap to minimize data loss : 50%

Samples obtained for each parent signal : 599

Total parent signals (bearing conditions and speeds) : 15

Total no of split signals : 8985
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Data under consideration



Experimental setup
target domain

• Obtained from two different experimental setups so as to validate
proposed model under different working conditions and for varied
bearing dimensions.
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TARGET DOMAIN 
DATASETS

Case Western Reserve 
University (CWRU) 

Bearing Dataset

Data acquired from 
MFS



Experimental setup
target domain dataset 1

23CWRU test rig setup



Experimental setup
target domain dataset 1

24

• DC motor of 220 V and 3 HP

• Bearing used: Make SKF, model 6205-2RS JEM

• Data from accelerometers fed to 16 channel DAT

• Variety of defects in bearings i.e., outer race (OR), inner
race (IR) defect, and ball defect (BD) are Introduced.

• Sampling frequencies – 12 and 48 kHz at motor loads of 0
to 3 HP.

• Experimental conditions approximating to source domain
data experimental setup selected, pertaining to fault size
of 0.021” at Drive End (DE) bearing with centered OR for
a sampling frequency of 12 kHz.

Pitch Diameter (D) 1.537”

Contact Angle (ϕ) 00

Outer Diameter (OD) 2.0472”

Ball Diameter (d) 0.3126”

Bore Diameter (Bd) 0.9843”

Specifications of deep grooved ball bearing



Experimental setup
target domain dataset 1
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• Only four defect viz. HB, IR, OR, BD present in downloaded data.

• Data divided into five different datasets on the basis of motor speeds viz. four
constant speeds and one combined data of different speeds.

• Every signal trimmed to first 121556 sample points.

• Each signal split into smaller samples same as done with source domain data
and subjected to CWT, thereby generating 378 images for each class of the
four datasets.

• Fifth dataset created by taking 95 images from each class of the four datasets,
thereby creating five datastores.



Experimental setup
target domain dataset 2

26Machinery Fault Simulator 



Experimental setup
target domain dataset 2
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• DC motor of 220 V and 1 HP.

• Variety of defects in bearings i.e., outer race (OR),
inner race (IR) defect, and ball defect (BD) are
introduced.

• Data acquisition and processing same as source
domain, thereby generating 1797 (599 images x 3
rotational speeds) images per class.

• Only four classes available view unavailability of CD
in MFS.

Specifications of deep grooved ball bearing

Number of balls (z) 8

Pitch Diameter (D) 1.318 in

Contact Angle (ϕ) 00

Ball Diameter (d) 0.3125 in

Bore Diameter (Bd) 0.75 in



Cnn model architecture 
selection

• CNN model architectures
• Selected on the basis of efficiency, speed in image classification, architecture

depth and number of parameters.

• Four architectures selected for comparison.
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CNN Model 
Architectures

GoogLeNet SqueezeNet AlexNet VGG-16

AlexNet GoogLeNet SqueezeNet VGG-16

Depth 8 22 18 16

No. of parameters (in mn) 61 7 1.24 138



Transfer LEarning

• Transfer learning implemented
for comparative analysis using
Deep Network Designer tool of
MATLAB.

• Total 12 combinations of SIC
techniques and CNN models (3
techniques x 4 models).
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• Training data divided into
training, validation and testing
data in the ratio of 70%, 20%
and 10% respectively

STFT

Grayscale

CWT

AlexNet
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GoogLeNet

VGG-16

Generated DataTraining Data

V
al

id
at

io
n

 
D

at
a

Te
st

 D
at

a



Training process with stft
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AlexNet GoogLeNet

SqueezeNet VGG-16



Training process with 
grayscale
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AlexNet GoogLeNet

SqueezeNet VGG-16



Training process with cwt
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AlexNet GoogLeNet

SqueezeNet VGG-16



Comparative analysis

• Training of networks done through Deep Network Designer of MATLAB.

• Transfer learning implemented through replacing the relevant network
layers and optimally specifying the training parameters, selecting the apt
batch size, validation frequency and number of epochs.

• Data augmentation undertaken for rendering the data suitable for
passing as input to the respective CNN model.

• Overfitting evident in case of training with grayscale images, thereby
entailing comparison between STFT and CWT techniques only.

• Training combinations evaluated on the basis of training time taken,
validation accuracy achieved, prediction time as well as relevant
confusion matrices.
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Comparative analysis

• Training Time. CWT technique consumes lesser time in training with
each network, with the least in AlexNet at 03h 03m 09s.
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Comparative analysis

• Validation Accuracy. Highest for CWT technique with AlexNet at 100%
followed by 99.81% for VGG-16, 99.75% for GoogLeNet and 99.01% for
SqueezeNet.
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Comparative analysis

• Prediction Time. Prediction time recorded for 900 test images and
found to be least for CWT-AlexNet pair at 3.85s.
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Comparative analysis

• Confusion Matrices. Prediction accuracies found to be 100% for all eight
combinations.

37



Comparative analysis: 
results

• Raw vibration signal converted to image through application of CWT.

• Pretrained AlexNet trained through transfer learning with generated
data.

• Out of the 12 combinations, fastest and most efficient. 38

Raw Vibration Signal CWT Image

Signal-to-image 
conversion

Pre-trained AlexNet

PROPOSED 
NETWORK

CWT-AlexNet 



Validation of proposed 
network : target dataset 1

• Validation of proposed network undertaken through two target domain
datasets.

• With target domain dataset 1 viz. CWRU data, training and prediction
with the proposed network undertaken for all five datastores wherein
generated data split into training, validation and test data in the ratio
70%, 20% and 10% respectively. (same as source domain data)

• Training process along with training and prediction parameters recorded
for all datastores.

• Proposed model achieves 100% prediction accuracy with individual as
well as combined speed datasets with minimal training and low
prediction time.
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Training process of cwru
datasets
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Dataset 1: 0 HP or 1797 RPM

Dataset 4: 3 HP or 1730 RPMDataset 3: 2 HP or 1750 RPM

Dataset 2: 1 HP or 1772 RPM



Training process of cwru
datasets
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Dataset 5: Combined speeds

Datastore Training Time
Validation 
Accuracy

Prediction Time 
(for 152 images)

Prediction 
Accuracy

Dataset 1 30m 40s 100% 1.03s 100%

Dataset 2 31m 4s 99.67% 1.29s 100%

Dataset 3 30m 49s 100% 1.22s 100%

Dataset 4 30m 57s 100% 1.39s 100%

Combined 31m 52s 98.36% 1.31s 100%

Recorded Parameters for Target Datastores



Validation of proposed 
network : target dataset 2

• With target domain dataset 2 viz. MFS
data, training and prediction with the
proposed network undertaken for the
created datastore wherein generated data
split into training, validation and test data
in the ratio 70%, 20% and 10%
respectively. (same as source domain
data)

• Validation accuracy achieved 100% with a
training time of 10h 2m 46s.

• Classification of 720 test images
completed in 4.7s with prediction accuracy
of 99.44% wherein 1 out of 180 images of
OR wrongly classified as IR.
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conclusion

• Comparative study of SIC techniques and CNN architectures undertaken
through a relatively less explored concept of transfer learning.

• Proposed network performs well for both the target domain datasets and
hence, can be put forth as a fast and efficient method of bearing fault
classification even at different rotating speeds.

• No pre-processing of acquired vibration data required and the proposed
network performs well for raw data while providing highly accurate results.

• Computational costs in terms of time consumed clearly brought out in the
analysis for different SIC methodologies as well as for light and dense
networks. Therefore, proper selection of SIC technique-CNN pair holds
importance.

• Implementation of transfer learning eliminates the need of “large datasets”
and the proposed network works fine with limited amount of data as well.
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FUTURE SCOPE

• Selection of SIC methodologies as well as pre-trained networks requires
domain expertise in the field of engineering as well as artificial
intelligence or data science. Efforts can be put towards development of
algorithms for automated suggestion of applicable techniques.

• Further, suitable signal pre-processing techniques and de-noising of the
raw vibration signals can be considered to further improve the results
obtained in the present study.
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