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NAVIGATION AND CONTROL OF 
AUTONOMOUS UNDERWATER 

VEHICLE USING DEEP 
REINFORCEMENT LEARNING



What is auv?

Unmanned vehicles for use under sea

Autonomy of operation

Military & commercial applications

Self carried batteries and streamline configuration

Autonomous capability for environmental perception, self 
localisation, analysis, decision making & operating missions



Path Following & Trajectory Tracking

Objective of control system – collision free optimal path & 
minimum tracking error

Localisation and navigation using Dead-Reckoning (DR) and 
Inertial Navigation Systems (INS)

Accuracy improvement through use of Doppler Velocity Log 
(DVL) or Terrain Aided Navigation (TAN) or GPS

Sensor fusion module used to improve state estimation by 
processing and merging available sensors data

Acoustic & vision based system for accuracies at short ranges



Sensor fusion



Collision Avoidance

Inputs – INS, Sonar, optical cameras, DVL etc.

Output – Steering commands to control surfaces

Detection and avoidance logic - environnemental perception,
obstacle avoidance planning and obstacle avoidance control

Challenges – Slow speed, control surface/ thruster efficiency,
reaction and response time, kinematic and dynamic
constraints



Collision Avoidance



Reinforcement Learning (RL)

Markov decision process (MDP) 

Basic framework of RL:-



Reinforcement Learning (RL)

Markov property – mapping of states to action

Markov process - future states depends only upon present 
state, not on preceded sequence

Markov decision processes - mathematical framework for 
modelling decision making  

Maximising long time cumulative rewards (with discount 
factor to address uncertainty) 𝐺𝑡 =  𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 +………..= 𝑅𝑡+1 + 𝛾𝐺𝑡+1 

𝜋 𝑎|𝑠 = 𝑝 𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠  



Reinforcement Learning (RL)

Value function - degree of goodness or badness for an agent 
in a certain state

‘State-value’ function 

Action-value function 

Relation between action-value 
& state-value

𝑉 𝑠 = 𝐸 𝐺𝑡 𝑠𝑡 = 𝑠  

𝑄 𝑠, 𝑎 = 𝐸 𝐺𝑡 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ] 

𝑉 𝑠 =  𝜋

𝑎∈𝐴

(𝑎|𝑠)𝑄𝜋(𝑠, 𝑎) 



Reinforcement Learning (RL)

Bellman equation

Objective of reinforcement learning is to find an optimal 
policy by maximizing value function V(s) or Q(s;a)

𝑉𝜋 𝑠 = 𝐸[𝑅𝑡+1 + 𝛾𝑉𝜋(𝑠𝑡 =  𝑠) 

𝑉∗ 𝑠 = 𝑚𝑎𝑥𝜋𝑉(𝑠) 

𝑄∗ 𝑠, 𝑎 = 𝑚𝑎𝑥𝜋𝑄(𝑠, 𝑎) 



Deep Reinforcement Learning

Combination of neural network and Q-learning algorithm

Prediction network Q(s;a;θ) and target network Q’(s;a;θ’)

Experience replay mechanism

Parameters of Q network updated through gradient back 
propagation using MSE loss function



Temporal Difference

Aids in learning Q-value - higher TD is good and small TD is
bad for learning of Q-value

Q-value is thus augmented or reinforced from time ‘t-1’ to
time ‘t’

𝑇𝐷𝑡 𝑎𝑡 , 𝑠𝑡 = 𝑟𝑡 + 𝛾 max 𝑄 𝑎, 𝑠𝑡+1  − 𝑄(𝑎𝑡 , 𝑠𝑡) 

𝑄𝑡 𝑎𝑡 , 𝑠𝑡 = 𝑄𝑡−1 𝑎𝑡 , 𝑠𝑡 + 𝛼𝑇𝐷𝑡(𝑎𝑡 , 𝑠𝑡) 



Temporal Difference

Q-values measure accumulation of good or bad TDs which 
are associated with the action-state pair (at; st). 

AI is reinforced for good cases, and weakened in bad cases

maximum of Q(at;st)

Softmax method

a =  argmax
𝑎

[𝑄 𝑎, 𝑠 ] 

𝑊𝑠: 𝑎 ∈ 𝐴 →
exp 𝑄 𝑠, 𝑎  

𝜏

 exp 𝑄 𝑠, 𝑎′  
𝜏

𝑎 ′

 𝑤𝑖𝑡ℎ 𝜏 ≥ 0 



Deep Q-learning for Navigation of AUV

CNN architecture for navigation of AUV



Deep Q-learning for Navigation of AUV

Feature maps Relu function (Output – Max (Zero, Input)

Feature map generated by 
convolution operation



Deep Q-learning for Navigation of AUV

Max pooling Flattening

Full Connection



Deep Q-learning for Navigation of AUV

Experience replay - learning from batch of experiences
instead of frame by frame or action after action learning

Experience replay breaks the pattern of sequential bias



Deep Q-learning for Navigation of AUV

Eligibility trace - technique used to optimise learning by
network

Agent will take N-steps and calculate total reward obtained
from these N-steps

Eligibility trace provides information of reward or penalty
obtained and specific step responsible for the same



Algorithm for Deep Q-Learning

Q-values of all action ‘a’ and state ‘s’ pairs are initialized to 0

Experience Replay is initialized to an empty list M

With the initial state ‘s0’, random action is selected and first
state ‘s1’ is reached.

At each time t ≥ 1, action ‘at’ is taken, where ‘at’ is a random
draw from the ‘Ws’ distribution

∀𝑎 ∈ 𝐴, 𝑠 ∈ 𝑆, 𝑄0 𝑎, 𝑠 = 0 

𝑎𝑡~𝑊𝑠𝑡 .  =
exp(𝑄(𝑠𝑡 , . ))𝜏

 exp(𝑄(𝑠𝑡 , 𝑎′))𝜏𝑎 ′
, 𝑤𝑖𝑡ℎ 𝜏 ≥ 0 



Algorithm for Deep Q-Learning

Reward ‘rt’ = R(at;st) is obtained

Next state ‘st+1’ is selected and taken, where ‘st+1’ is a
random draw from the T(at;st; .) distribution

Transition (st; at; rt; st+1) is appended in M

A random batch is taken from B⊂M of transitions



Algorithm for Deep Q-Learning

For each transition (stB; atB; rtB; stB+1) of the random 
batch B:-

Loss error is back-propagated to update weights according to
how much they contributed to the error

𝑠𝑡+1~𝑇(𝑎𝑡 , 𝑠𝑡 , . ) 

(i) Prediction is obtained :- 
  
𝑄(𝑠𝑡𝐵 , 𝑎𝑡𝐵) 
 

(ii) Target is obtained:- 
 

𝑟𝑡 + γmax
𝑎

[𝑄(𝑎, 𝑠𝑡+1)] 

 

  (iii) Loss is calculated:- 
 

𝐿𝑜𝑠𝑠 =
1

2
 [𝑟𝑡 + γmax

𝑎
[𝑄(𝑎, 𝑠𝑡+1)] − 𝑄(𝑎𝑡 , 𝑠𝑡))2 =

1

2
𝑇𝐷𝑡(𝑎𝑡 , 𝑠𝑡)2 



Asynchronous Actor-Critic Agents (A3C)

‘n’ agents A1, A2,..., An - each agent shares two networks
viz. the actor and the critic

Critic evaluates present states, while actor evaluates possible
values in present state

Actor is used to make decisions

At each epoch time of training for an agent, it takes the last
version of shared networks and uses actor during ‘n’ steps in
order to make a decision



Asynchronous Actor-Critic Agents (A3C)

Over ‘n’ steps, it collects all observed new states, the values
of these new states, the rewards, etc.

After the n steps, agent uses collected observations in order
to update the shared models

Times of epoch and the times of updates of shared network
by agent are asynchronous

Problem of an agent getting stuck in local minima is reduced
by using A3C algorithm



Asynchronous Actor-Critic Agents (A3C)



Actor-Critic 

In A3C, there are two outputs – 1st is q-values for different
actions and 2nd is value in that state

Critic measures how good the action taken is (value-based)
V(s)

Actor outputs a set of action probabilities the agent can take
(policy-based) Q(s,a)

Agent uses value estimate (the critic) to update policy (the
actor) so that actor can output better actions that result in a
higher reward



Actor-Critic 



Asynchronous 



Advantage 

Advantage - difference between q-value of an action taken
and value of that state = Q(s, a) — V(s)

Advantage provides information on how much better is the q-
value than the known value

High advantage - q-value is a lot better than known value.
This behaviour is enforced and these actions repeated.

Low advantage - neural network tries to prevent these
actions from occurring again



A3C algorithm with LSTM

In dynamic environment, it is difficult to predict direction and
motion of the obstacle

Network has to remember motion of moving obstacle from
past frames, so that AUV can decide its own course to steer

Past frame memory is stored in LSTM which replaces hidden
layer in fully connected layer

LSTM layer allows A3C algorithm to have memory which
allows algorithm to remember what happened before



A3C algorithm with LSTM



Conclusion

Selective overview of controlling AUVs with Deep
Reinforcement learning

Conventional optimal control or adaptive control etc. have
limitations for time varying systems like navigating an AUV

Non-linear system pose difficulties and are not robust for
parameter variation or changes in the input form

Deep reinforcement learning are robust and well suited to
controlling systems in dynamic non-linear environments

Their inherent parallel structure allows for very efficient
processing




