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Distribution shift between train and test data

Camelyon17 - WILDS fMoW - WILDS

WILDS: A Benchmark of in-the-Wild Distribution Shifts by Koh et al., 2020
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● Loss of accuracy for various models due to 
distribution shift between train and test data [1].

●

● In some cases, can change from highly accurate 
to close to random.

[1] Accuracy on the Line: On the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization, Miller et al., ICML 2021
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● Small, invisible to the eye, perturbations can 
drastically change model predictions.

● Termed adversarial examples.

● SB   smaller margin
poor adversarial robustness

Bio-inspired Robustness: A Review, by 
Machiraju et al., 2021
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● Given data points and a predictor function 

(e.g., neural network), the standard empirical risk minimization (ERM) 

objective is given by:

● Adversarial training:

● Doesn’t fix SB.



Proprietary + ConfidentialFixing SB through ensembles
● Ensembles refer to training of multiple models with different subsets of 

data, random initializations etc.
● Helps when there are multiple features of similar complexity.

○ Different models learn different features.
● However, when different features have widely different complexities, all 

models learn the same feature.
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To fix SB,

need to understand its precise manifestation …
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Test-bed dataset: ColoredMNIST

Task: Classify (mostly red) 0 vs (mostly yellow) 1

High correlation between color and digit (label).

vs
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● Some features (e.g., color) are replicated multiple times in the 
feature space compared to other features (e.g., digit shape).

● Final linear classifier relies more on such replicated features.

● 3 layer CNN with 32 penultimate
features has more color features than
shape features.

● Output is more dependent on color
 features than shape features.

Type of 
feature Number Output 

correlation

Color 26 0.81

Shape 4 0.61

Key insight I: Feature replication
(ICLR 2023)
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● SGD trained networks converge 
to the max-margin solution.

● When features are replicated, 
max-margin classifier gives more 
weight to the replicated feature.

● Becomes worse with increasing 
dimensions! 

Max-Margin Classifier under Feature Replication

Max margin classifier in 
replicated feature 
space - 
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Feature Reconstruction Regularizer (FRR)

● Reconstruct features from logits

● Minimize the reconstruction loss

● Mathematical formulation - 

● Ensures that logits contain 

information about all features.
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FRR under Feature Replication

● FRR gives equal weightage to 

replicated and unreplicated features 

● Requires-

○ Relatively diverse 

representations

○ Some conditional variance 

between core and spurious 

features.
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● Replicated features (e.g. color) learned and used by models are 
often brittle to small adversarial perturbations.

● We train two models on data with perfect shape and color 
correlation respectively, and compute 
their accuracy on adversarially perturbed
images.

● The performance of a model dependent
on color features sees a huge drop.

Feature 
used by 
model

Test 
Accuracy

Adv. accuracy 
with 

perturbation=0.1

Color 99% 53%

Shape 99% 85%
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Prior work [1] has shown that 
adversarial robustness is negatively 
correlated with clean accuracy.

Experiments earlier showed that 
adversarial training doesn’t fix SB.

Can we use adversarial training?

[1] Towards Deep Learning Models Resistant to Adversarial Attacks by Madry et al
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We freeze the backbone of an ERM 
trained network and fine-tune the 
final linear layer using adversarial 
training.

Adversarial fine-tuning: The sweet spot
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● First train a large model and use its predictions to train a smaller model.

○ Observed to give better performance on standard accuracy and is 

widely used.

● Can we use this to improve out of distribution robustness?

Aside: Distillation
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● Standard distillation doesn’t

transfer robustness from

large model to small model.

● Key Idea: Ensure incorrect
logits of teacher are
informative with
○ good teachers with

adversarial finetuning
○ poorer in domain accuracy of teacher mitigated 

● A smaller model with DAFT can outperform larger ERM trained models.

Distillation for OOD robustness
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Method Accuracy on 

DomainBed

Improvement 
over previous 

SOTA

ERM 63.3 -

SWAD 
(Previous 

SoTA)
66.8 -

DAFT [1] 66.9 0.1

FRR [2] 67.9 1.1

FRR+DAFT 68.4 1.6

DomainBed is a large scale benchmark 

with multiple domain shift datasets.

We achieve a new state of the art on 

this benchmark.

[1] Draft on arxiv; [2] Accepted to ICLR 2023.
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● Neural networks suffer from extreme simplicity bias (SB).

● SB is a key reason behind poor robustness to distribution shifts.

● Non-robust features and Feature replication: Two empirically 
grounded hypotheses for OOD brittleness of neural networks.

● Two methods to alleviate these issues-
○ FRR utilizes all learned features, even under feature replication 

[ICLR 2023]
○ DAFT combines adversarial fine-tuning and distillation to learn 

robust features

● New SOTA on large scale OOD benchmark.
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● Currently, the era of foundation models trained on large/diverse data.

● Do foundation models suffer from SB? If yes, how does it manifest? How can 
we make foundation models more robust?

● Can we improve dataset collection to mitigate SB?

● The role of interpretability methods in analyzing and mitigating SB in trained 
models.
○ Input gradient based explanations work for adversarially trained models 

but not for standard models [1]

[1] Do input gradients highlight discriminative features? [SJN, Neurips 2021]


