Role of multi-agent systems in a future fleet

Dr. Apurva Joshi

VP – R&D

Indrones Solutions Pvt. Ltd

۶								
	Artificial Intelligence: A M	odern Approach, 4th US ed.						
△ US Edition	C C							
△ Global Edition	by <u>Stuart Russell</u> and <u>Peter Norvig</u>							
Acknowledgements								
Code	The <u>authoritative</u> , <u>most-used</u> AI textbook, adopted by over <u>1500</u> schools.							
Courses	Table of Contents for the US Edition (or see the Global Edition)							
Editions	Praface (ndf): Contents with subsections	V Machina Learning						
Editions	I Artificial Intelligence	19 Learning from Examples 651						
Errata	1 Introduction 1	20 Learning Probabilistic Models 721						
	2 Intelligent Agents 36	21 Deep Learning 750						
Exercises	II Problem-solving	22 Reinforcement Learning 789						
Figures	3 Solving Problems by Searching 63	VI Communicating, perceiving, and acting						
	4 Search in Complex Environments 110	23 Natural Language Processing 823						
Instructors Page	5 Adversarial Search and Games 146	24 Deep Learning for Natural Language Processing 856						
	6 Constraint Satisfaction Problems 180	25 Computer Vision 881						
Pseudocode	III Knowledge, reasoning, and planning	26 Robotics 925						
Reviews	7 Logical Agents 208	VII Conclusions						
Inconcords	8 First-Order Logic 251	27 Philosophy, Ethics, and Safety of AI 981						
	9 Inference in First-Order Logic 280	28 The Future of AI 1012						
	10 Knowledge Representation 314	Appendix A: Mathematical Background 1023						
	11 Automated Planning 344	Appendix B: Notes on Languages and Algorithms 1030						
	IV Uncertain knowledge and reasoning	Bibliography 1033 (pdf and LaTeX .bib file and bib data)						
	12 Quantifying Uncertainty 385	Index 1069 (pdf)						
	13 Probabilistic Reasoning 412	` ▲ ───						
I within I may and	14 Probabilistic Reasoning over Time 461	<u>Exercises (website)</u>						
Russel Artificial Intelligence	15 Probabilistic Programming 500	Figures (pdf)						
Norvig A Modern Approach	16 Making Simple Decisions 528	Code (website); Pseudocode (pdf)						
	17 Making Complex Decisions 562	Covers: US, Global						
	18 Multiagent Decision Making 599							

△ AI: A Modern Approach

Modified: Aug 22, 2022

Synopsis

Multi-agent or "swarm" systems have drawn the military's attention over the last two decades due to their potential **expendability**, redundancy, and expanded sensor coverage. This interest can primarily be attributed to the dynamic field of **unmanned systems technology**, which has been rapidly developing both in government and in the private sector. In this talk, we will go through the research and development in this field and discuss initiatives that need to be taken to advance from the current unmanned systems paradigm in which a single pilot controls a vehicle or a few vehicles at most, to remotely supervised swarms.

Background

Autonomous vehicles Multi-agent systems

About us #rapidgroundtruthing

indrones

About us #rapidgroundtruthing

MeitY Startup Hub @MSH_MeitY

As part of the DRISHTI grand innovation challenge, An initiative of the @Gol_MeitY in partnership with @SSB_INDIA.

Field trials of Drone-based surveillance in Assam were carried out by Infinity Arsenal Pvt. Ltd and @indrones on the 7th & 8rd of December.

Inflight Disaster Management

Activities Image: Google Chrome Live Streams - Indrones × ← → C Image: Image: Google Chrome	+		Gan Gan Gan Irea	867 MH2 ^{mem} 39% ^{net} •	6 ¹⁰ + 15 ¹⁰ ^{thermal} 53°C		● ▼ 4)	 66% → Sun Jan 15, 08:4: → - ☆ ★ □ 	809● ₽ × € :	Lot 8 Kachuberia
in Flight.live		Welco	me to Gar	ngasagar	2023		GANGASAGAR		1	
Live Stream	L	ive Streams							100	
Previous Streams		NAME	STATUS	STREAMID	PLAY STREAM	START STREAM	COPY PUBLISH URL	CROWD COUNTING BETA	a file	Nan
		Lot 8 Ghat	broadcasting	qspskpv2	Þ	ወ	Copy URL	Count		
		Namkhana Ghat	broadcasting		►	ሪ	Copy URL	Count		
		Sagar Temple	broadcasting	rgd4z7hf	Þ	ሆ	Copy URL	Count		Chemaguri/Benubon
		Kachuberia Ghat	started	y5pcrkks	Þ	U	Copy URL	Count		
		Sagar Bus Stand	started		Þ	U	Copy URL	Count		Sagar Temple
E Engineer	Ð	Chemaguri Ghat	started		Þ	ሪ	Copy URL	Count		
									-	

hana

Inflight Disaster Management

Inflight Crowd estimation

Time: Friday, 13th Jan 2023, Inflight crowd7estimate ~ 528

Role of multi-agent

Inspect Linear Asset Management

Change detection

21st July 2021

4th August 2021

Detecting changes between two drone runs

IOCL: Delhi - Panipat Section

Role of multi-agent systems in a future fleet | INS Valsura

Change detection

Inspect Linear Asset Management

Change detection

21st July 2021

4th August 2021

Change detection

Detecting changes between two drone runs

IOCL: Delhi - Panipat Section

- Vehicles that can perform tasks with minimal human intervention
- Add value to the mission/goal

inòrones

VTOL prototype at IIT Bombay

^ Precise payload delivery

Real time onboard object detection >

^ Prototype delivery drone

Role of multi-agent systems in a future fleet | INS Valsura

Vision based drone detection

Dr. Apurva Joshi apurva.joshi@3011abs.com

Dr. Swaroop Hangal

301 Labs, NCETIS - IIT Bombay

[CONFIDENTIAL]

Multi-agent systems

- Perform tasks through cooperation with minimal human intervention

- Add value to the mission/goal

Cooperative control algorithms

Boids $\square PSO$ Levy Flight □ Scheduling □ Sorting **Collective consensus** □Artificial potential fields □Brownian motion **L**eader-follower

Cooperative control algorithms

Formation flight (Joshi et. al.)

A human pilot commands one robot, the autonomous robots hold formation and follow

Coverage and Search (Borkar et. al.)

A team of robots follow a coverage pattern and search for specific targets

Cooperative control algorithms

Capture (Joshi et. al.)

Autonomous robots detect an invading robot and surround it in minimum time

Autonomous robots track the evading robot so that it cannot escape

Pursue (Joshi et. al.)

Cooperative control algorithms

Consensus (Joshi et. al.)

Robots communicate with their neighbours and autonomously navigate to a rendezvous point

Communications (Joshi et. al.)

Collision-free TDMA based communication protocol for multi-agent operations

Missions *

HADR

- Unique; time between notification and deployment is much shorter than most military operations
- Immediate response phase

Assets:

- USN Ships:
 - Ianding helicopter dock (LHD) amphibious assault ship – with medical support, CH-53 and MH-60 variants for transport, lift, and SAR; and landing craft air cushion (LCAC) for ship-to-shore supply delivery
- Ianding helicopter assault (LHA) amphibious assault ship - with medical support, CH-53, MH-60 variants, and
 Giles, Kathleen. "Miss Model 22 for iteransport artific omposability". PhD thesis

HADR

Assets:

- joint task force command and control node (JTFC2)—tactical air control squadron (TACRON), joint force air component commander (JFACC), or other joint task force (JTF) asset who will be providing air traffic control. Responsible for coordination between military and NGO assets.
- Helicopters—MH-60 variants and CH-53, for SAR and ship-to-shore personnel and supply transport; and C-2 for personnel and supply transport from the LHD

Missions *

HADR

□ Assets:

- UAV swarm consists of a collection of identical UAVs launched from the LHD, a GCS, launch, and recovery systems, capable of providing:
 - streaming IR, video for detecting, classifying and identifying targets in the IR spectrum, during wide-area, day or night search
 - EO video for detecting, classifying and identifying targets in the visible light spectrum during wide-area, day-time search in clear atmosphere

Missions *

HADR

□ Assets:

- UAV swarm consists of a collection of identical UAVs launched from the LHD, a GCS, launch, and recovery systems, capable of providing:
 - SAR for all-weather detection and classification of stationary objects, and for determining the status of infrastructure such as roads, bridges, and buildings. IR and EO sensors can be cross-cued to and initial SAR target detection.
 - simultaneous voice relay and data-link communication over VHF, UHF, and military and commercial satellite

Missions *

HADR

- Operating Environment, Threat Environment
 Success Requirements:
 - embark on and operate from LPD-19, LHD–
 5, LHA–6, or LHA-8 class ships
 - collect and disseminate imagery data to military and civilian units to improve timeliness of humanitarian need prioritization and decrease response time to deliver relief supplies
 - provide communication relay to other military and civilian units to improve information dissemination among participating units and decrease response time to deliver relief supplies.

Designing a Swarm *

C2 Architectures

Taxonomies

Designing a Swarm *

Bottom-up design

Agent-based models
 Petri Nets
 Behaviour-based design
 Finite State machines

Top-down design

Designing a Swarm *

Requirements Development

 \Box CONOPS \rightarrow Conceptual design

 \Box Physical Architectures \rightarrow Construction of prototypes

 \Box Iterations \rightarrow Detailed design

□ Software

□ Agile dev

Automatic testing

□ Continuous Integration

Modelling Swarm systems

Microscopic: Agent

Macroscopic: Collective

Swarm System V&V

Lightweight Formal MethodsExperimentation

Doctrine, Strategy and Tactics

Communication Architecture

in
 ornes
 Factors affecting Swarm design *

Fully Autonomous: UAV swarms perform fully autonomously without any operator interference

Machine-Oriented Semi-Autonomy: UAV swarms inform operators of special needs, but make most decisions without operator instruction

Human-Oriented Semi-Autonomy: UAV swarms inform operators often and rely on instructions for most decision making

Manual Operation: Operators make all decisions and actions for UAV swarms

The Human component and autonomy

indrones **Mission-based Architecture for Swarm** Composability * Missions Phases Tactics Plays Algorithms a1 t1 p1 P1 M1 p2 t2 a2 $\mathbf{z} \in \mathbf{z}$ $\mathbf{x} \in \mathbf{x}$ 1.1.1 $\mathbf{x} \in \mathbf{x}$ рЗ a3 t3

Pn

Mn

* Giles, Kathleen. "Mission-based Architecture for Swarm Composability ". PhD thesis

an

pn

tn

ingrones Mission-based Architecture for Swarm

Missions

 The swarm mission is the highest level element of the architecture, and describes the overall task or objective assigned to the swarm
 HADR, MIO, ISR, SAR, ASW, etc.

indrones **Mission-based Architecture for Swarm** Composability Plays Algorithms * Phases Missions Phases Tactics □ Staging a1 t1 p1 □ Mission Planning P1 M1 □ Pre-flight p2 t2 a2 □ Ingress On-Station

 $\mathbf{x} \in \mathbf{x}$

p3

pn

.....

Mn

Pn

 $\mathbf{x} \in \mathbf{x}$

t3

tn

- **E**gress
- Postflight

* Giles, Kathleen. "Mission-based Architecture for Swarm Composability ". PhD thesis

 $\mathbf{x} \in \mathbf{x}$

a3

an

indrones **Mission-based Architecture for Swarm** *

Tactics

- □ Ingress = {Launch, Transit to WP, Sensors ON}
- □ Evasive Search = {Random Pattern, Sensors ON/EMCON}
- □ Efficient Search = {Sensors ON, Ladder,
 - Expanding square, Constricting square, grid}
- □ Track = {Sensors ON, Follow target}
- **Comm** relay
- □ Attack
- **D** BDA
- □ Monitor
- **D** Evade
- □ Harass
- Defend
- **D**eter
- **Divide**

indrones **Mission-based Architecture for Swarm** *

- □ Launch
- □ Transit to WP
- Orbit
- □ Racetrack
- □ Split
- **D** Join
- **D**isperse
- □ Sensors ON/EMCON/OFF
- Expanding/constricting square/grid/random search

Plays

- U Weapon arm/fire
- **Given Service** Follow target
- □ Forward communication
- **J**am

MASC examples *

* Giles, Kathleen. "Mission-based Architecture for Swarm Composability ". PhD thesis

Role of multi-agent systems in a future fleet | INS Valsura

p8.2

sensors OFF

p1

launch p2

ansit to WF

p8.3

a3

Sorting

a1.1

Boid's

Ph1

Preflight

t1

Ingress

From algorithms to missions

Beyond line-of-sight delivery mission (Hangal et. al.)

A team of robots cooperate on a BVLOS delivery mission. An intermediate agent acts as a communications relay between the ground station and the payload delivery vehicle

From algorithms to missions

Coverage and search mission (Hangal et. al.)

A team of agents take-off from a base station and flock to a designated area, which they optimally sweep. Each agent is "trained" to detect targets of interest. Once the target is found, the agents rendezvous at the target, ready to engage

inòrones From algorithms to missions

	+*-			
	*	t <mark>ut</mark> terminator ▼	ig 16,0158 I 56°C IJI 54°C III	
	Transition to mission start point	7523032.124153483, 2207.1302000009]: CND: Unexpected connand 176, result 0 ator) fRL: land at destination 7523111.65379627, 2286.664000009]: FCU: RTL: land at destination ator) fRL: land at destination nder] Landing detected 7523147.481379263, 2399.8136000000]: FCU: Landing detected hder] DISARHED by Auto disarm initiated D [togger] Closed logfile, bytes written: 10070496 D [togger] Closed logfile, bytes written: 10070496 D [togger] Closed logfile, bytes written: 10074960 D [togger] Closed logfile, bytes written: 10074540	<pre>4. Enter target co-ords (lst,lon,alt(rel to hone)) 5. Select target co-ords (ust,lon,alt(rel to hone)) 6. Select target co-ords by confidence levels 6. Send nodes towards target 7. Autonnova a. Use set area parans t. Target Test node 9. Quit New node 1: [1, 1597523195, 1, data: 0, 0.5099999904632568, 19.1345501, 72.9122258, -0.043, -7.7.7, 0.07) New node 2: [2, 1597523195, 1, data: 0, 0.509999904632568, 19.1345501, 72.9122545, -0.085, 3.50, 0.6] New node 2: [3, 1597523195, 1, data: 0, 0.509999904632568, 19.1345501, 72.9122545, -0.085, 3.50, 0.6] New node 2: [4, 1597523195, 1, data: 0, 0.509999904632568, 19.1345501, 72.9122457, 0.221, 3.246, 0.6] New node 4: [4, 1597523195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 1597523195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 1597523195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 1597523195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.271, 3.07, 0.6] New node 4: [4, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.277, 3.07, 0.6] New node 4: [4, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.277, 3.07, 0.6] New node 4: [4, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.912167, 0.277, 3.07, 0.6] New node 5: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345503, 72.9122167, 0.277, 3.07, 0.6] New node 5: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345508, 72.912167, 0.277, 3.07, 0.6] New node 5: [5, 159752195, 1, data: 0, 0.509999904632568, 19.1345508, 72.912167, 0.277, 3.07, 0.6] New node 5: [5, 159752195, 1, data: 0, 0.509999904632568, 19.135508, 72.912167, 0.277, 3.078, 0</pre>	On-board sensors search for target
		<pre>ite "/usr/itb/python2.7/threading.py", itme 881, inbootstrap_timer self.run() le '/usr/itb(python2.7/threading.py", itme 881, inbootstrap_timer self.run() le '/usr/itb(python2.7/threading.py", itme 754, in run ''itb(python2.7/threading.py", itme 882, in publish self.rpn; setpoint publish(self.pos) self.pos; setpoint() self.itb() self.itb() self.itb() self.itb() self.itb() self.itb() to a closed topic' Seception; publish() to a closed topic')</pre>	<pre>SwaroopBihebadbest:-/Catkin_wsio5x13 File */usr/ltb/python2.7/threading.py*, line 881; inbootkrap_liner self.run() File */usr/ltb/python2.7/threading.py*, line 754; in run File */usr/ltb/python2.7/threading.py*, line 754; in run File */usr/ltb/python2.7/threading.py*, line 754; in send_pos self.pos.setpoint.pub.publish(self.pos) File */pytros/netodic/ltb/python2.7/dist-packages/rospy/topics.py*, line 882; in publish relse ROSException(*publish() to a closed topic') ROSException: publish() to a closed topic')</pre>	
		roop@thebadbeast:-/catkin_ws5 rosrun formationcontrol_iitb vehiclenode_uav0.py[] swiroopOthebadbeast:-/catkin_ws toixii self.railureException(nsg) FAIL 6 [] 5. 1 [rest liceaton_ops_setenints]	swaroopgthebadbeast:-/catkin_ws5 rosrun formationcontrol_(itb vehiclenode_uav1.py[] swiroop9thebadbeast:-/catkin_ws0ossii File */usr/itb/python2.7/unittest/cate.py*, ithe 410, in fail raise self-failurescreption(nsg) ummAury: * USENUT: FAIL * TESTS: 1 * EROPS: 0 [] * EATURES: 1 [feet lissatou pos setupiots]	1339 do Quill, 19 for 793 3 1335, 19 for Pulliprova 7938 1113
*	-\$- 	<pre>wbadbeast:-/catkin_ws\$ rosrun formationcontrol_ittb vehiclenode_uav2.py] swaroop@thebadbeast:-/catkin_ws1005x12 scif.fallureException(reg) FAIL f [] f []</pre>	swaroopgthebadbeast:-/catkin_ws; rosum formationcontrol_litb vehiclenode_uav3.py[] B swaroopgthebadbeast:-105x12 potition: intide: 19.135989244 longitude: 72.911589264 altitude: 10.0 sys_ld: 5 position: latitude: 19.137913652 latitude: 72.911894 longitude:	The ding_pad = .00
222	Take-off from base station	ebadbeast:-/catkin_ws\$ rosrun formationcontrol_litb vehiclenode_wav4.py	n⊂Swaroop@thebadbeast;-5 ∏	Real-time video stream received at base station

From algorithms to missions

Future work

□Holistic

Deploy

Collaborators

Prof. Hemendra

Arya

Prof. Debraj Chakraborty Prof. Hoam Chung Dr. Swaroop Hangal

Prof. Ameer Mulla, Prof. Chayan Bhawal, Prof. Megha Kolhekar

Pravin Prajapati

Ravi Singh

Harshad Bhanushali

Aakash Sinha

Chittaranjan, Dhananjay Kulkarni

Thank you

For R&D collaborations please write to <u>apurva@indrones.com</u>

For products and services please write to

info@indrones.com

